\$5.3 The relationship between measure theoretic entropy.

Recall that for a TDS (X, T),

$$h(T) = \sup_{\mathbf{d}} h(T, \mathbf{d})$$

where d ranges over all open covers of X  $f(T,d) = \lim_{n \to \infty} \frac{1}{n} \log N(\bigvee_{i=0}^{n-1} T^i d).$ where N(d) = the smallest number of members of i

where N(d) = the smallest number of members of d that can cover X.

Notice that for two open covers d,  $\beta$  of X, we write  $d < \beta$  if each member of  $\beta$  is the subset of a member of d.

Clearly  $N(a) \leq N(\beta)$  if  $a < \beta$ .

Lem 5.4. Let (X, T) be a TDS, and let (2n)

be a sequence of open covers of X with diam (dn) >0.

Then  $h(T) = \lim_{n \to \infty} h(T, d_n)$ .

Pf. Let a be an open cover and let 8>0 be a Lebesque number (i.e. any set ACX with

diam A < 8 is the subset of a member in d) Now if dn is an open cover of X with diam(dn) < 8,

then d < dn.

R-1 i k+1 i dn for all  $k \in \mathbb{N}$ , i=0which implies that

 $N\left(\bigvee_{i=0}^{k-1}T^{i}a\right)\leqslant N\left(\bigvee_{i=0}^{k-1}T^{i}a_{n}\right)$ ound so

$$-h(T, a) \in h(T, dn)$$

Hence 
$$h(T,d) \leq \lim_{n \to \infty} h(T,d_n)$$
  
Thus

Thus
$$-h(T) \leqslant \frac{\sinh h}{h \to \infty} h(T, d_n) \leqslant \overline{\lim_{n \to \infty} h(T, d_n)} \leqslant h(T).$$

· The following fundamental thm was due to Goodwyn in 1968 Thm 5.5. Let (X, T) be a TDS. Then  $\Re(T) = \sup \left\{ \Re_{\mu}(T) : \mu \in M(X,T) \right\}$ 

where 
$$M(X,T)$$
 denotes the collection of T-invariant Borel.

Prob. measures on  $X$ .

Recall that  $h_{1}(T) = \sup_{x \in X} h(T \xi)$ 

Recall that  $h_{\mu}(T) = \sup_{\xi} h_{\mu}(T, \xi)$ where d ranges over all partitions of X,

where d ranges over all partitions of 
$$X$$
,
$$R_{\mu}(T,\xi) = \lim_{n \to \infty} \frac{1}{n} H\left( \bigvee_{i=0}^{k-1} T^{i} \xi \right).$$

To prove Thm 5.5, we need the following Lemmas.

Lem 5.6. Let X be a compact metric space and  $\mu \in \mathcal{P}(X)$ .

(1) If xeX and 8>0, then  $\exists 0<8'<8$  such that

 $\mu \left(a \; B(x,s')\right) = 0$ .

(2) If s > 0,  $\exists a \; partition \left\{A_1, \dots, A_k \right\} \circ f\left(X, \mathcal{P}(X)\right)$ 

Such that  $diam(A_i) < s$  and  $\mu(a(A_i)) = 0$ .

Pf. (1) It is clear since we don't have an uncountable collection of disjoint sets of positive measures.

(2) By (1), we can find a finite over cover

 $\{U_1, \dots, U_m\}$  of X by balls of radius  $<\frac{8}{2}$ 

and  $\mu(a \cup_i) = 0$ . Set  $A_i = \overline{U_i}$   $A_2 = \overline{U_2} \setminus \overline{U_i}$   $A_3 = \overline{U_3} \setminus (\overline{U_i} \cup \overline{U_2})$  ...

Then  $\partial(A_i) \subset \bigcup_{i=1}^m \partial U_i$  Hence  $\mu(\partial A_i) = 0$ .

Check:  $x \in \partial(A_i)$ , suppose that  $x \notin \bigcup_{k=1}^{m} \partial(A_k)$ .

Then  $x \in U_i$  and  $d(x, U_j) > 0$  for all j < i. (see  $F_{ij} = 1$ )

Hence  $x \in Int(A_i)$ .)



Clearly {A1, ..., Am } is a partition of X.

Proof of the upper bound:  $h_{\mu}(T) \leq h(T)$  for all  $\mu \in M(X,T)$ 

Pf. Let  $\mu \in M(X,T)$ . Let  $\xi = \{A_1, \dots, A_R\}$  be a finite

Boral partition of X. Choose 8>0 such that

For each i,

Choose compact  $B_i \subset A_i$  with  $\mu(A_i \setminus B_i) < \epsilon$ .

Take 
$$B_0 = X \setminus \bigcup_{i=1}^R B_i$$
. Then  $B_0$  is open.

Moreover  $\beta = \{B_0 \cup B_1, B_0 \cup B_1, \cdots, B_0 \cup B_k\}$  is an open cover of X.

Let 
$$y = \{B_0, B_1, \dots, B_R\}$$
. Then y is another partition of X.

Moreover

 $(\phi(x) := -x \log x)$ .

Moreover
$$H(\S|\mathfrak{I}) = \sum_{i=0}^{k} \sum_{j=1}^{k} \mu(B_i) \, \phi\left(\frac{\mu(B_i \cap A_j)}{\mu(B_i)}\right)$$

$$= \mu(B_0) \cdot \sum_{i=0}^{k} \phi\left(\frac{\mu(B_0 \cap A_j)}{\mu(B_0 \cap A_j)}\right)$$

$$H(3|J) = \sum_{i=0}^{k} \sum_{j=1}^{k} \mu(b_i) + \mu(B_i)$$

$$= \mu(B_0) \cdot \sum_{j=1}^{k} \varphi\left(\frac{\mu(B_0 \cap A_j)}{\mu(B_0)}\right)$$

$$\leq \mu(B_0) \cdot \log k \quad \text{(sinke for } i \neq 0, \frac{\mu(B_i \cap A_j)}{\mu(B_i)}$$

$$\leq g \mid k \mid \log k \quad \text{(sinke for } i \neq 0, \frac{\mu(B_i \cap A_j)}{\mu(B_i)}$$

$$\leq g \mid k \mid \log k \quad \text{(sinke for } i \neq 0, \frac{\mu(B_i \cap A_j)}{\mu(B_i)}$$

Hence 
$$\beta_{\mu}(T, \S) \leq \beta_{\mu}(T, \mathfrak{J}) + H(\S \mathfrak{J})$$

$$\leq \beta_{\mu}(T, \mathfrak{J}) + 1$$

< ERlozk

Next we compare  $h_{\mu}(T, \eta)$  and  $h(T, \beta)$ .

Notice that each member in 
$$V = T^{-1}\beta$$
  
is of the form  $(\beta_0 \cup \beta_{i_1}) \cap T^{-1}(\beta_0 \cup \beta_{i_2}) \cap \cdots \cap T^{-(n-1)}(\beta_0 \cup \beta_{i_n})$ 

which intersects at most 2" many members

in V T-1

Hena

Hence 
$$N(\bigvee_{i=0}^{n-1}T^{i}\beta) \geqslant \frac{N(\bigvee_{i=0}^{n-1}T^{i}\beta)}{2^{n}}$$

(add a simple lem about this).

Hence 
$$H_{\mu}\left(\begin{array}{cc} V & T^{-i} \\ i = 0 \end{array}\right) \leq \log \left(N\left(\begin{array}{cc} N - i \\ i = 0 \end{array}\right) \cdot 2^{h}\right)$$

It follows that  $R(T, y) \leq R(T, \beta) + \log 2$ 

This combined with 1 yields

$$\Re_{\mu}(\tau, \S) \leq \Re_{\mu}(\tau, \mathfrak{g}) + H_{\mu}(\S|\mathfrak{g})$$

In the above inequality, replacing T by T, and

$$f_{\mu}(T^{h}, \bigvee_{i=0}^{h-1} T^{-i} \S) \leq f_{i}(T^{h}) + 1 + \log 2$$

It is easy to check that

$$h_{\mu}(T^{n}, \bigvee_{i=0}^{h-1} T^{-i} \mathfrak{F}) = n h_{\mu}(T, \mathfrak{F})$$

and also

$$h(T^h) = n h(T)$$
 (see the justification after the proof the upper bound.

Henu

i.e.  $h_{\mu}(\tau, \mathfrak{z}) \in h(\tau) + \frac{1+\log 2}{n}$ .

Hence 
$$h_{\mu}(\tau) = \sup_{\xi} h_{\mu}(\tau, \xi) \leq h(\tau)$$
.

This proves the upper bound. 

Lem 5.7. Let 
$$(X,T)$$
 be a TDS. Then for each  $n \in \mathbb{N}$ ,  $h(T^n) = n h(T)$ .

Pf. Let a be an open cover of X and nEN

Then 
$$d < \bigvee_{i=0}^{n-1} T^i d$$
.

Hence 
$$\Re(T^n, \alpha) \leqslant \Re(T^n, \bigvee_{i=0}^{h-1} T^i \alpha)$$

$$= n h(T, a)$$

$$\leq n h(T)$$

Hence
$$-h(T^h) = \sup_{\alpha} h(T^h, \alpha) \leq hh(T).$$

$$n h(T,a) = h(T^n, \bigvee_{i=0}^{h-1} T^{-i}a) \leq h(T^n)$$

Hence

This proves that 
$$nh(T) = h(T^h)$$
.